<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00-8:45</td>
<td>Morning Coffee / Tea</td>
</tr>
<tr>
<td>8:45-9:00</td>
<td>President Opening Remarks</td>
</tr>
<tr>
<td>9:00-9:50</td>
<td>William Baum (Univ. of California, Davis)</td>
</tr>
<tr>
<td></td>
<td>Rethinking Reinforcement</td>
</tr>
<tr>
<td>10:00-10:50</td>
<td>Richard Foxx (Penn State Univ.)</td>
</tr>
<tr>
<td></td>
<td>The State of the Art: The Treatment of Aggressive/Destructive Behavior since the 1989 NIH Consensus Conference</td>
</tr>
<tr>
<td>10:50-11:10</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11:10-12:00</td>
<td>Sigrid Glenn (Univ. of North Texas)</td>
</tr>
<tr>
<td></td>
<td>Operant Behavior and the Evolution of Cultures</td>
</tr>
<tr>
<td>12:00-1:30</td>
<td>Lunch</td>
</tr>
<tr>
<td>1:30-2:20</td>
<td>Richard Smith (Univ. of North Texas)</td>
</tr>
<tr>
<td></td>
<td>On the Use of Complex Schedules to Evaluate Interventions for Behavior Disorders</td>
</tr>
<tr>
<td>2:30-3:20</td>
<td>Daniel Openden (Southwest Autism Research and Resource Center)</td>
</tr>
<tr>
<td></td>
<td>A Systematic Desensitization Paradigm to Treat Hypersensitivity to Auditory Stimuli in Children with Autism in Family Contexts</td>
</tr>
<tr>
<td>3:20-3:40</td>
<td>Afternoon Coffee / Tea</td>
</tr>
<tr>
<td>3:40-4:30</td>
<td>Bryan Davey (Arizona Centers for Comprehensive Education and Life-Skills)</td>
</tr>
<tr>
<td></td>
<td>Functional Behavioral Assessment and Evidence-Based Practice</td>
</tr>
<tr>
<td>4:45-5:30</td>
<td>Open Forum: Practicing Applied Behavior Analysis in the Four Corner Region</td>
</tr>
<tr>
<td>5:30-6:30</td>
<td>Business Meeting</td>
</tr>
<tr>
<td>8:00-10:00</td>
<td>Poster Session / Cash Bar</td>
</tr>
</tbody>
</table>
Tuesday
8:30- 9:00 – Morning Coffee / Tea

9:00- 9:50 – Stephen Suomi (Eunice Kennedy, NIH)
Risk, Resilience, and Gene x Environment Interactions in Rhesus Monkeys and Other Primates

10:00-10:50 – Stephen Helms Tillery (Arizona State University)
Muscle-free Behavior: Analysis of Neuroprosthetic Control

10:50-11:10 – Coffee Break

11:10-12:00 – Federico Sanabria (Arizona State Univ.)
Dissociation of Timing, Impulsivity, and Bursting in a Modified Differential Reinforcement of Low Rates (DRL) Schedule.

12:00-12:15 – Closing Remarks / Election Remarks / Thanks
Abstracts

William Baum (Univ. of California, Davis)
Rethinking Reinforcement
When the concept of reinforcement is paired with the concept of behavioral allocation, reinforcement may be seen as the process of shifting allocation. Skinner’s assertion that the law of effect is not a theory was correct, even if his theory of reinforcement was incorrect. Research of the last forty years suggests that the events called “reinforcers” affect behavior in two ways: induction and contingency. Reinforcers induce activities related to them by life history or phylogeny, and reinforcers add value to the situations in which they occur. By linking particular activities with particular results, contingencies both constrain behavior change and add value to those activities. Seen this way, reinforcement may be construed as optimization, a tendency to move toward the highest value possible. These dynamics of reinforcement may be seen sometimes on a short time scale and sometimes on a longer time scale. Recent research by Davison and Aparicio and myself, as well as some earlier experiments, support these ideas.

Learning Objectives:
1. Reinforcement is a change in behavioral allocation.
2. Reinforcement is a process of constrained optimization.

Richard Foxx (Penn State Univ.)
The State of the Art: The Treatment of Aggressive/Destructive Behavior since the 1989 NIH Consensus Conference
This talk will cover four areas: (1) A discussion of the 1989 National Institute of Health Conference on the treatment of destructive behavior; (2) An analysis of the scientific literature on the treatment severe aggressive and destructive behavior since the conference; (3) An introduction to the Behavior Severity Index, an instrument to assess the overall severity of an individual’s aggressive/destructive behavior; and (4) The presentation of two case studies (Foxx and Meindl, 2007; Foxx and Garito, 2007) that represent state of the art treatment of aggression.

Learning Objectives:
1. Attendees will learn the conclusions of the NIH consensus conference
2. Attendees will learn the current status of the behavioral treatment of aggressive/destructive behavior
3. Attendees will learn the history of the development of a Behavior Severity Index
4. Attendees will be exposed to two complex treatments of aggressive behavior
Sigrid Glenn (Univ. of North Texas)
Operant Behavior and the Evolution of Cultures
The conceptual parallel between organic and cultural evolution has been explored by writers in many fields, but they generally miss the role of operant behavior in the evolution of cultures. Cultural phenomena begin with operant behavior in the same sense that biological phenomena begin with replicating molecules. DNA is not, however, all there is to the biological world, nor is operant behavior all there is to the cultural world. Like DNA in biology, operant behavior can give rise to increasingly complex phenomena which themselves come to play functional roles in the evolution of cultures. If experimental analysis of the process by which cultural things arise and evolve is possible, the first step might well be to develop a preparation that has the simplicity of Skinner’s lever press. In the Behavior and Culture Lab at UNT, we have been working toward that goal. Data from three experiments will document efforts toward that end.

Learning Objectives:
Participant will be able to:
1. Identify the independent variables for three cultural selection experiments
2. Identify the dependent variables for the cultural selection experiments
3. Explain the rationale for distinguishing between behavioral and cultural processes

Richard Smith (Univ. of North Texas)
On the Use of Complex Schedules to Evaluate Interventions for Behavior Disorders
Behavioral researchers have long used complex arrangements of reinforcement contingencies to evaluate basic behavioral processes; however, only recently have applied researchers used complex schedules of reinforcement to investigate problems of immediate social and personal significance. Recent studies have used concurrent and progressive schedules to evaluate preference and reinforcer value (e.g., Roane, Call, & Falcomata, 2005), multiple and mixed schedules have been used to train students to recruit reinforcement (e.g., Tiger & Hanley, 2004) and to evaluate effects of treatments for behavior disorders (e.g., Simmons & Smith, 2005). The current presentation will describe several studies employing multiple and mixed schedules to evaluate the immediate and subsequent effects of interventions for problem behavior. Outcomes will be presented and the utility of complex schedules to investigate the effects of interventions, the principles underlying those effects, and issues of treatment fidelity will be discussed.

Learning Objectives:
1. Attendees will be able to define and describe differences between multiple and mixed schedules of reinforcement
2. Attendees will be able to describe how the use of multiple and mixed schedules can produce information about the immediate and immediately subsequent effects of interventions
3. Attendees will be able to describe how the use of multiple and mixed schedules can produce information about the basic principles underlying the effects of behavioral interventions
4. Attendees will be able to describe the possible influences of motivating variables and behavioral contrast as they relate to the outcomes of experiments using multiple and mixed schedules
Daniel Openden (Southwest Autism Research and Resource Center)

A Systematic Desensitization Paradigm to Treat Hypersensitivity to Auditory Stimuli in Children with Autism in Family Contexts

Many children with autism display reactions to auditory stimuli that seem as if the stimuli were painful or otherwise extremely aversive. Koegel, Openden, & Koegel (2004) describe, within the contexts of three experimental designs, how procedures of systematic desensitization can be used to treat hypersensitivity to auditory stimuli in three young children with autism. Stimuli included the sounds from a vacuum cleaner, blender, hand-mixer, toilet flushing, and specific animal sounds from musical toys. A changing criterion design was used and data were collected (a) the number of hierarchical steps completed as comfortable with the stimulus per week; and (b) the mean level of anxiety per probe. A clinical replication was implemented using a replication of the desensitization procedures for three children. In addition, a systematic replication across three different stimuli is presented for on child in a multiple baseline. The data show that the children’s responses could be modified to the point where they were comfortable with these noises. Furthermore, this level of comfort was maintained at follow-up. The discussion suggests that the extreme reactions to auditory stimuli many children with autism exhibit may be decreased with procedures that have been shown to be effective with reducing phobias, and the possibility that the reactions may be symptomatic of a phobia rather than actual pain. Finally, preliminary data from a current replication study that employs desensitization procedures for reducing sensitivity to haircuts in children with autism will be presented.

Learning objectives:

1. Participants will be able to describe intervention procedures for treating hypersensitivity to auditory stimuli

2. Participants will be able to describe how to implement systematic desensitization procedures

3. Participants will be able to describe how the application of a counter-conditioning behavioral intervention used to treat phobias can be used to successfully treat problem behaviors commonly assumed to be sensory related and the associated theoretical implications

Bryan Davey (Arizona Centers for Comprehensive Education and Life-Skills)

Functional Behavioral Assessment and Evidence-Based Practice

The symposium will highlight the application of functional behavioral assessment methodologies in public school settings. The session will begin with a literature review of 53 empirical studies that describe functional behavioral assessment. All studies included structural analyses or functional analyses, conducted for students with identified disabilities included in the Individuals with Disabilities Education Act of 2004. Population characteristics, educational placement, target behaviors, functional behavior assessment methodologies and outcomes, and treatment selection and outcomes will be presented. The symposium will conclude with further examination of the function-based treatments. This analysis will focus on whether selected treatments are considered evidence-based practice based on a professional organization’s standards.

Learning objectives:

1. Participants will state various FBA methodologies

2. Participants will describe which FBA methods are prevalent in public school settings

3. Participants will describe the types of interventions employed in public school settings
Stephen Suomi (Eunice Kennedy National Institute of Child Health and Human Development, NIH)
Risk, Resilience, and Gene X Environment Interactions in Rhesus Monkeys and Other Primates
Recent research with both humans and rhesus monkeys has provided compelling evidence of gene-environment (G x E) interactions throughout development. For example, a specific polymorphism (“short” allele) in the promoter region of the serotonin transporter (5-HTT) gene is associated with deficits in neurobehavioral functioning during infancy and in poor control of aggression and low serotonin metabolism throughout juvenile and adolescent development in monkeys who experienced insecure early social attachments but not in monkeys who developed secure attachment relationships with their mothers during infancy. In contrast, monkeys possessing the “long” allele of the 5-HTT gene exhibit normal neurobehavioral functioning, control of aggression, and serotonin metabolism regardless of the relative security of their early attachment relationships. One interpretation of these G x E interaction data is that the long 5-HTT allele somehow confers resilience to adverse early attachment relationships on those individuals who carry it (“good genes”). An alternative interpretation of the same data is that secure attachment relationships somehow confer resiliency to individuals who carry alleles that may otherwise increase their risk for adverse developmental outcomes (“good environments”). These two interpretations are not mutually exclusive, but the differences in their respective implications for developing effective strategies for successful intervention in and even prevention of adverse developmental outcomes in affected individuals are considerable.

Learning Objectives:
1. Characterize individual differences in rhesus monkey stress reactivity.
2. Demonstrate gene-environment interactions influencing development.
3. Characterize mother-infant attachment in rhesus monkeys.

Stephen Helms Tillery (Arizona State Univ.)
Muscle-free Behavior: Analysis of Neuroprosthetic Control
Recent technological and scientific developments have made neurally controlled prosthetics increasingly viable. Researchers have capitalized on improvements in both our knowledge of signal processing in the brain and increases in computing power to create computer systems that, once interfaced to the nervous system, can be used by subjects to perform a variety of tasks. Implicit in much of this work is the idea that these systems will be able to take advantage of learning and adaptability in the nervous system, and in fact much system design relies on this untested assumption. We have embarked on a series of studies that explicitly test the ability of the brain to learn to control these neuroprosthetic systems under a variety of challenges. We are training non-human primates to control the motion of a sphere in a virtual environment by using brain signals. To achieve this, we record the signals of thirty to fifty individual neurons, and use a linear algorithm to combine those signals and convert them into a velocity vector that drives the sphere. Once an animal is able to perform this task, we will begin to challenge the animal by introducing a variety of changes to the way that the sphere responds to the neural signals. We are also examining the use of tactile cues in manipulative tasks, with the intention of providing somatosensory feedback regarding the interactions with objects. A robust neuroprosthetic system will have take advantage of both the adaptive properties and feedback control algorithms in the nervous system.

Learning objectives:
1. Be able to name cortical systems commonly used in neuroprosthetics
2. Describe physiological relationships between neural activity in these systems and movement
3. Explain how the physiology changes when these neural systems are recruited to control electronic devices
Dissociation of Timing, Impulsivity, and Bursting in a Modified Differential Reinforcement of Low Rates Schedule

The Differential Reinforcement of Low Rates (DRL) schedule of reinforcement is widely used to measure impulsivity. In this schedule, only responses that are spaced by a minimum time are reinforced; inefficiency in collecting reinforcement is often taken as an indicator of impulsivity. The Temporal Regulation (TR) model (Sanabria & Killeen) uses parameters of a bimodal distribution to characterize various aspects of waiting performance--timing, impulsivity, and bursting (fast, iterated responses). We tested whether bursting could be isolated in pigeons by separating the keys that initiated and terminated the waiting interval. In rats, we tested whether this separation resulted in improved performance when methylphenidate (which reduces impulsivity in humans with Attention Deficit Hyperactivity Disorder) was injected. We discuss our results in light of potential developments in animal models of impulsivity.

Learning objectives:

Attendants to this talk will learn about the most recent developments in

1. Animal models of impulsivity
2. Quantitative modeling of impulsive behavior
3. Behavioral and pharmacological intervention on impulsive behavior in experimental settings
William M. Baum received his A.B. in psychology from Harvard College in 1961. Originally a biology major, he switched into psychology after taking courses from B. F. Skinner and R. J. Herrnstein in his freshman and sophomore years. He returned to Harvard University for graduate study in 1962, where he was supervised by Herrnstein and received his Ph.D. in 1966. He spent the year 1965-66 at Cambridge University, studying ethology at the Sub-Department of Animal Behavior. From 1966 to 1975, he held appointments as post-doctoral fellow, research associate, and assistant professor at Harvard University. He spent two years at the NIH Laboratory for Brain, Evolution, and Behavior, and then accepted an appointment in psychology at University of New Hampshire in 1977. He retired from there in 1999. He currently has an appointment as Associate Researcher at University of California – Davis and lives in San Francisco. His research concerns choice, molar behavior-environment relations, foraging, and behaviorism. He is the author of Understanding Behaviorism: Behavior, Culture, and Evolution.

Richard Foxx is a Professor of Psychology at Penn State Harrisburg and Clinical Adjunct Professor of Pediatrics at the College of Medicine of the Pennsylvania State University. He has written eight books, over 130 scientific articles and has made 13 training films. He has given over 1700 talks and workshops. Dr. Foxx is an internationally recognized expert in treating behavioral problems. He has lectured in 11 foreign countries and 47 states. He is the Editor-in Chief of Behavioral Interventions and is on the editorial board of five scientific journals. Dr. Foxx is a Fellow in five divisions of the American Psychological Association, the Association for Behavior Analysis-International, the American Psychological Society, and the American Association on Mental Retardation. He was the President of the Association for Behavior Analysis and the Division of Mental Retardation and Developmental Disabilities of the American Psychological Association. He has served as an expert witness in a number of court cases involving individuals with autism and developmental disabilities. One of his books, Toilet Training in Less Than a Day, has sold over two million copies and has been translated into seven languages and one of his training films, "Harry" (the treatment of a self-abusive man), has won numerous cinematic awards.

Sigrid Glenn is Regents Professor of Behavior Analysis and was the founding chair of the Department of Behavior Analysis at UNT. She is a past president of the Association for Behavior Analysis International and a founding fellow of ABA. Her published work includes empirical and theoretical journal articles, book chapters, and books targeting audiences within and outside behavior analysis. In the past several years, she and her students have collaborated with faculty and students in Norway and Brazil in developing a research program on behavior and culture.
Richard Smith received his Masters and Doctoral degrees at the University of Florida. After receiving his Doctoral degree, Rick joined the faculty at the University of North Texas, where he currently serves as Chair of the Department of Behavior Analysis. His primary research interest is in the assessment and treatment of behavior disorders in persons with developmental disabilities, with specific areas of focus in motivational variables, advances in functional analysis procedures, and the use of complex research designs to investigate basic principles underlying the effects of behavioral interventions. His research has resulted in numerous presentations and publications, and he has served on several editorial boards, including a term as Associate Editor for the Journal of Applied Behavior Analysis. In 1997, Dr. Smith received the American Psychological Association (Division 25) B. F. Skinner Award for Innovative and Important Research by a New Researcher, in 2000 he received the Texas Association on Mental Retardation’s Research Award, and in 2007 he received the Hiram J. Friedsam award for distinguished faculty service from UNT’s College of Public Affairs and Community Service.

Daniel Openden is Clinical Services Director for Southwest Autism Research & Resources Center (SARRC) and Faculty Associate in the Division of Curriculum & Instruction, Mary Lou Fulton College of Education at Arizona State University. He received his doctorate in Special Education, Disability, and Risk Studies under the mentorship of Drs. Robert and Lynn Koegel at the University of California, Santa Barbara. Dr. Openden has worked extensively with families with children with Autism Spectrum Disorders on both federal and state funded research projects; provided consulting and training for school districts across the country; presented research at regional, state, and national conventions; and has been published in peer reviewed journals and book chapters in the field. He has expertise in developing training programs for teach parents and professionals to implement Pivotal Response Treatment (PRT), a comprehensive, evidence-based treatment model for children with Autism Spectrum Disorders. In 2004, Dr. Openden received the CalABA Julie Vargas Award for original research with his study, “A Systematic Desensitization Paradigm to Treat Hypersensitivity to Auditory Stimuli in Children with Autism in Family Contexts.” He is currently an Associate Editor for the Journal of Positive Behavior Interventions and his research interests include parent education, professional development, positive behavior supports, early intervention, inclusion, and dissemination of service delivery models for children with Autism Spectrum Disorders.

Bryan Davey is the Director of Behavioral Services at ACCEL. Additionally he consults privately for families and various organizations across the state. He is a Board Certified Behavior Analyst and a certified special education teacher who holds a Doctorate from Utah State University and a Masters degree from Gonzaga University in Special Education.

Dr. Davey primary services include training school personnel in the application of behavioral principles and procedures in the classroom, conducting functional behavioral assessments/analysis, developing effective performance-based treatment protocols for children with severe behavior problems, developing positive behavior support plans, and designing skill acquisition programs to enhance the lives of individuals with exceptionalities.

Dr. Davey’s research interests include the discipline of Applied Behavior Analysis, functional behavior assessment, classroom management, treatment of aberrant behaviors, effective teaching principles, and issues related to special education personnel preparation. Dr. Davey has presented his research and conducted workshops at numerous national conferences and has several publications in peer reviewed journals.
Stephen Suomi is Chief of the Laboratory of Comparative Ethology at the National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH) in Bethesda, Maryland. He also holds appointments as Research Professor at the University of Virginia (Psychology), the University of Maryland, College Park (Human Development), and The Johns Hopkins University (Mental Hygiene), and is an Adjunct Professor at Georgetown University (Psychology), the Pennsylvania State University (Human Development) and the University of Maryland, Baltimore County (Psychology). Dr. Suomi studied Psychology as an undergraduate at Stanford University and continued his studies as a graduate student at the University of Wisconsin-Madison, receiving his Ph.D. in Psychology in 1971. Dr. Suomi then joined the Psychology faculty at the University of Wisconsin-Madison, where he eventually attained the rank of Professor. In 1983 he left Wisconsin to join the NICHD, when he began his present position.

Dr. Suomi has received international recognition for his extensive research on biobehavioral development in rhesus monkeys and other primate species. His initial postdoctoral research successfully reversed the adverse effects of early social isolation, previous thought to be permanent, in rhesus monkeys. His subsequent research at Wisconsin led to his election as Fellow in the American Association for the Advancement of Science “for major contributions to the understanding of social factors that influence the psychological development of nonhuman primates.” Since joining the NICHD he has identified heritable and experiential factors that influence individual biobehavioral development, characterized both behavioral and physiological features of distinctive rhesus monkey phenotypes, and demonstrated the adaptive significance of these different phenotypes in naturalistic settings. His present research focuses on 3 general issues: the interaction between genetic and environmental factors in shaping individual developmental trajectories, the issue of continuity vs. change and the relative stability of individual differences throughout development, and the degree to which findings from monkeys studied in captivity generalize not only to monkeys living in the wild but also to humans living in different cultures.

Throughout his professional career Dr. Suomi has been the recipient of numerous awards and honors. To date, he has authored or co-authored over 350 articles published in scientific journals and chapters in edited volumes. He has also delivered over 350 invited colloquia, symposium and workshop presentations, and convention papers in the U.S. and in 15 foreign countries.

Stephen Helms Tillery is Assistant Professor in the Harrington Dept. of Bioengineering at Arizona State University. He also holds appointments as Assistant Professor in the Department of Kinesiology & the Department of Psychology at ASU, and is Director of the Sensorimotor Research Group and Co-director of the Motor Neuroscience Research Cluster also at ASU. Additionally, he is a Research Assistant Professor at the Barrow Neurological Institute in Phoenix, AZ. Dr. Helms Tillery studied Neuroscience at the University of Minnesota, receiving his Ph.D. in Neuroscience in 1994. Dr. Helms Tillery has conducted extensive research on the cortical control of neuroprosthetic devices.
Federico Sanabria obtained his Ph.D. in 2004 from Stony Brook University, under the supervision of Dr. Howard Rachlin. He was a postdoctoral associate in Arizona State University in the laboratories of Dr. Peter Killeen (2004–8) and Dr. Janet Neisewander (2008). He is currently assistant professor of psychology at Arizona State University.

Jade C. Hill received a Bachelor’s of Science with honors from Jacksonville State University in 2008, under the supervision of Dr. William Palya. She is currently a graduate student at Arizona State University, under the supervision of Dr. Peter Killeen and Dr. Federico Sanabria.
Call for Posters

Posters consist of visual displays of information, usually reporting empirical research. All posters are reviewed and approved by the Conference Committee.

Guidelines - Your poster is similar to a condensed version of an APA report. It should include the same sections, but in an abbreviated format.

- You will be provided a tabletop for your poster. Your poster should be free standing or you may bring your own easel.
- Your poster should be about 4’ x 6’ in size.
- The poster session area will not provide projection equipment, electrical outlets, etc.
- Posters must only report findings of the research. No advertising or product identification by brand name is allowed.
- At least one of the authors must be by the poster to answer attendees’ questions during the poster session.

Helpful Hints - The text of your poster should be visible from at least 1 meter away. As a result, you should use a large font for your primary text (20 point or larger) and an even larger font for your headings.

- Avoid fonts that are script or difficult to read.
- Use graphs, and/or tables (preferably color) to show results. Graphics make your poster more interesting.
- A neutral poster is more amenable to the eye than a brightly colored background. A splash of color here and there, perhaps highlighting central finding(s) or provocative results, will make your poster "stand out" from the crowd.
- Although handouts are not required, it is recommended that you come prepared with a brief handout that summarizes your presentation that can be given other attendees (50 copies are recommended).
Four Corners ABA 2nd Annual Conference
Exhibitor Registration Form

Sedona, Arizona
April 6 - 7, 2009

Please submit by April 1, 2009

Space is limited! Please sign up immediately to secure an exhibitor table.

Company Name and Address

Contact Person: __

Business Phone: ______ Fax: ________________________________

E-mail Address: __

Our company would also like to do the following:

- **☐** Advertise in the electronic newsletter ($50).
 (Please include information for printing.)

- **☐** We will need a whole table at $200.00. (Cost includes 1 free advertisement in the electronic newsletter and admission for 1 exhibitor.)
 - **☐** ______ additional exhibitors @ $100.00 per person.
 (Tables are approximately 6 feet in length)

- **☐** We will need half a table at $100.00. (Cost includes 1 free advertisement in the electronic newsletter and admission for 1 exhibitor.)
 - **☐** ______ additional exhibitors @ $100.00 per person.
 (Tables are approximately 3 feet in length)

- **☐** We cannot attend conference but would like to contribute marketing materials for distribution at the conference at $50.00 for distribution of up to 50 items.

Total amount enclosed $__________

Please make checks payable to: Four Corners ABA

Mail to: Four Corners ABA
PO Box 280583
Lakewood, CO 80228-0583
Personal Information (Please Print):

| Last Name: __ |
| First Name: __ |
| Affiliation: ___ |
| Address: ___ |
| City: ___ |
| State/Zip Code: __ |
| Home Phone: ________________________________ |
| Work Phone: __ |
| Fax Phone: __ |
| E-Mail: ___ |
| BCBA or BCABA Number: ___________________________ |

Position Title (Please check the box that most closely describes your job title):

- ___ 01 Administrator
- ___ 02 Consultant/Trainer
- ___ 03 Psychologist
- ___ 04 Therapist
- ___ 05 Behavior Analyst
- ___ 06 Parent
- ___ 07 School Teacher
- ___ 08 Student
- ___ 09 Professor/Academic
- ___ 10 Researcher
- ___ 11 Speech/Language
- ___ 12 Guardian
- ___ 13 Other: _______________________________________

Primary Discipline (Please check the box that most closely describes your field of study/practice):

- ___ 01 Behavior Analysis
- ___ 02 Education
- ___ 03 Organizational Mgt.
- ___ 04 Clinical Psychology
- ___ 05 Animal Behavior
- ___ 06 Speech/Communication
- ___ 07 Medicine/Pharmacology
- ___ 08 Social Work
- ___ 09 Other: _______________________________________

Primary Activity (Please check the box that most closely describes how you spend the majority of your time at work):

- ___ 01 Administration
- ___ 02 Consulting/Training
- ___ 03 Retired
- ___ 04 Speech/Language
- ___ 05 Teaching
- ___ 06 Student
- ___ 07 Clinical
- ___ 08 Research
- ___ 09 Other: _______________________________________

Degree Information:

| Most Recent Degree: __________________________ |
| Year Received: ____________________________ |
| Conferring Institution: _______________________ |

Membership Categories and Fees:

- ___ 01 Supporting Full Member $125.00
- ___ 02 Full Member $100.00
- ___ 02 Affiliate Member $ 50.00
- ___ 03 Student Member $ 25.00

Requirements for Membership Categories:

Full Member - must hold at least a masters degree in experimental or applied behavior analysis (ABA), be a Board Certified Behavior Analyst, have made contributions to the field of applied behavior analysis (e.g., professional publications), or hold a full time professional position that includes teaching, research and/or practice in ABA.

Supporting Full Member – Same as Full Member

Affiliate Member - Anyone who has an interest in Applied Behavior Analysis but does not meet the requirements of a Full Member *Must submit letter of recommendation*

Student Member - Anyone who has an interest in Applied Behavior Analysis and is a student on at least a half-time basis. Student applications must be accompanied by an endorsement from a Full Member certifying the applicant’s student status or by other documentation certifying such.

Verification of Student Status:

I, __ certify that ______________________________________ is a full-time student at __

Faculty/Full Member/Affiliate Member Sign & Date

What sort of topics would you like to learn more about?

- ___ 01 ABA
- ___ 02 Animal Behavior
- ___ 03 DD/Autism
- ___ 04 Mental Health
- ___ 05 College Programs
- ___ 06 Quantitative analysis
- ___ 07 Behavioral Pharmacology
- ___ 08 BCBA Certification
- ___ 09 Services in Area
- ___ 10 Skill Acquisition
- ___ 11 Behavior Reduction
- ___ 12 Other: _____________

Would you like to receive Four Corners- related e-mails or meeting minutes?

- ___ 01 Yes
- ___ 02 No

Payment:

<table>
<thead>
<tr>
<th>Membership Fee</th>
<th>Donation</th>
<th>Total</th>
</tr>
</thead>
</table>

Please make checks payable to Four Corners ABA

Mail completed form and payment to:

Four Corners ABA
P. O. Box 280583
Lakewood, CO 80228-0583